UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM BECIDIENT'S CATALOG NUMBER 2 GOVT A CESSION NO ONR/CR 168-007-1 THE OF ALPONT & PL NOD COVERED AN EVALUATION OF DIRECT CURRENT ELECTROMAGNETIC Final Report . Jan-May 1979, PROPULSION IN SEAWATER. REAPORMING ORG. REPORT NUMBER ale TA 79-9B2-EMSUB-R1) CONTRACT OR GRANT NUMBER 7 AUTHOR'S N00014-78-C-0667 ALC. T. Hummert PERFORMING ORGANIZATION NAME AND ADDRESS AREA & WORK UNIT NUMBERS Westinghouse Electric Corporation 62332N, RF32-391-801, R&D Center, 1310 Beulah Road NR168-007 Pittsburgh, PA 15235 11. CONTROLLING OFFICE NAME AND ADDRESS 12- REPURT DATE August, 1979 Office of Naval Research // 800 North Quincy St. Arlington, VA 22217 13 NUMBER OF PROF 73 14 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15 SECURITY CLASS (of this report. Unclassified DCAFMA, Pittsburgh 1610-S-Federal Bldg, 1000 Liberty Avenue DECLASSIFICATION DOWNGRADING Pittsburgh, PA 15222 16 DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. *7 DISTRIBUTION STATEMENT (of the abstract entered in Block 20 If different from Report) 16 F30 311 RF=23111911 18 SUPPLEMENTARY NOTES 19 KEY HORDS (Continue on reverse side if necessary and identify by block number) propulsion, electromagnetic, thrust, submarines, submersible, seawater, conductivity, drag, direct, currents ABS*RAC* (Continue on reverse side if necessary and identify by block number) Electromagnetic seawater thrusters may be classified in one of three general categories: internal duct dc, external field dc, and peristalic ac. Internal duct dc thruster offers the advantages of low magnetic field leakage, simple construction, and potentially high reliability. The most efficient internal duct configuration consists of a converging inlet nozzle and a straight discharge duct. Ideal efficiency calculations based on the onedimensional Bernculli equation show that thrusters should be designed with DD 1 JAN 73 1473 SOBSOLETE UNCLASSIFIED 11396 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered

UNCLASSIFIED

I ASE (Winn Data Entered)

Block 20 Continued:

Jarge cross-sectional areas and operate at low discharge condition. In practice, this may be accomplished by using multiple thruster ducts. ductivity enhancement, high magnetic fields, and long electrodes also improve efficiency.

While the magnetic field-volume requirements for thruster capable of propelling full-size (2000 ton displacement) submarines appears beyond the present technology, it may be feasible to use superconducting magnets to build high efficiency, internal duct thruster capable of maneuvering small (v10 ton displacement) submersibles.

opr x

AN EVALUATION OF DIRECT CURRENT ELECTROMAGNETIC PROPULSION IN SEAWATER

G. T. Hummert Electrotechnology Department

ABSTRACT

Electromagnetic seawater thrusters may be classified in one of three general categories: internal duct dc; external field dc, and peristaltic ac. Internal duct dc thrusters offer the advantages of low magnetic field leakage, simple construction, and potentially high reliability. The most efficient internal duct configuration consists of a converging inlet nozzle and a straight discharge duct. Ideal efficiency calculations based on the one-dimensional Bernoulli equation show that thrusters should be designed with large cross-sectional areas and operate at low discharge velocities. In practice, this may be accomplished by using multiple thruster ducts. Conductivity enhancement, high magnetic fields, and long electrodes also improve efficiency.

While the magnetic field-volume requirements for thruster capable of propelling full-size (2000 ton displacement) submarines appears beyond the present technology, it may be feasible to use superconducting magnets to build high efficiency, internal duct thruster capable of maneuvering small (~10 ton displacement) submersibles.

TABLE OF CONTENTS

Page

ABSTR	ACT	i
NOMEN	CLATURE	iii
1.0	INTRODUCTION	1
2.0	CONCLUSIONS AND RECOMMENDATIONS	3
3.0	BACKGROUND	5
	 3.1 General Description	5 6 7 7 8
4.0	THRUSTER PERFORMANCE CALCULATIONS	10
	 4.1 Thruster Model	10 11 12 12 13 14 15 15 17 19 19 20 21 21 22
5.0	GAS EVOLUTION THROUGH ELECTROLYSIS	23
6.0	PRELIMINARY DESIGN PROCEDURE	24
REFE	RENCES	. 26
APPEN	NDIX A-1: Submersible Hull and Thruster Drag	61
APPE	NDIX A-2: Electromagnetic Coupling to Conducting-Fluid Flow .	. 66
APPEN	NDIX A-3: Computer Program Listing and Sample Print-Out	. 68

やいいまし

NOMENCLATURE

K _s	8	$C_{\rm D} \frac{A_{\rm p}}{s} \rho/2 = \text{constant of proportionality:} D = K_{\rm s} v_{\rm s}^2 (Nt/(m/s)^2)$
vs	=	relative velocity between submerged body and water (m/s)
vout	8	discharge velocity (m/s)
vp	н	velocity in pumping region of duct (m/s)
C _D	-	drag coefficient (dimensionless)
v	н	velocity in pumping region of duct (m/s)
A	н	effective drag cross-sectional area (m ²)
ρ	-	density of water (kg/m ³)
σ	-	electrical conductivity of water (mho/m)
D	=	drag (newtons)
Т	=	thrust (newtons)
J	н	duct electrical current density (amp/m ²)
I	=	duct electrical current (amps)
V	-	duct voltage (volts)
L	п	electrode length (meters)
В	ų	duct magnetic field (tesla)
b	ġţ	one-half electrode spacing (m)
а	н	one-half duct width along B-field direction (m)
α	=	aspect ratio = b/a (dimensionless)
Λp		4ab = cross-sectional area of duct in pumping region (m2)
Aout	80	cross-sectional area of discharge (m ²)
A _c	-	cross-sectional area of inlet cone

-

m	=	mass flow rate thru duct (kg/s)
η	-	Tv _s /IV = efficiency (dimensionless)
k ₁	=	derived parameter = v_p/v_s (dimensionless)
Po	-	free-stream pressure (Nt/m ²)
Pz	-	nozzle pressure (Nt/m ²)
Pin	=	pressure at pump inlet (Nt/m ²)
ΔPz	-	$P_z - P_o = pressure drop through nozzle (Nt/m2)$
∆P in	đ	$P_o - P_{in} = inlet pressure drop (Nt/m2)$
ΔP	=	$P_z - P_{in} = pump head (Nt/m^2)$
f	-	factor appearing in voltage, current and efficiency expressions (dimensionless)
N	gill.	interaction parameter (dimensionless)
W _f	=	fluid power (watts)
n _p	-	propulsive efficiency (dimensionless)
n _e	=	electrical efficiency (dimensionless)
ε	-	v _p /v _s (dimensionless)

iv

1.0 INTRODUCTION

This study was undertaken to investigate the practicality of internal duct, direct current electromagnetic propulsion of submersible ocean vessels, ranging from full size submarines down to small maneuver to underwater platforms. The scope of this study is limited to a broad overview of performance characteristics tather than detailed des gn considerations: the emphasis here is on rapid assessment of trage-offs between major design parameters, such as magnetic field intensity, electrode length and duct size. Performance and efficiency calculations do not, therefore, include minor hydrodynamic and magnetohydrodynamic (MHD) effects, and the resulting curves should be used for general comparisons and trade-off analyses. These curves, for instance, enable the reader to quickly determine overall thrust efficiency as a function of duct area, magnetic field strength, electrode length, and multiple ducting. This information is presented for each of three submersible classes: full, one-third, and one-tenth sizes corresponding to hull diameters of about 10, 3, and 1 meters, respectively.* The assumed drag characteristics for these three sizes are given in Fig. 1.

As will be shown later, overall performance is a strong function of the magnetic field intensity, and the magnitude of field used for the performance curves given here ranges from conventional (0.5 T) to superconducting (5 T) excitation sources. The impact of conductivity enhancement via seeding with hydrochloric acid (HCL) is also presented along with estimates of the volume of evolved gases released by electrolysis at the electrode surfaces. Finally, duct dimensions are restricted to reasonable ranges of engineering capability, limited by the volume requirements for the magnetic field. It does not seem reasonable, for instance, to consider a thruster design that requires 10 Tesia (super-

*See Appendix A-1 for a discussion of hull size, shape, displacement, and drag.

conducting excitation) throughout a duct interior of several hundred cubic meters. Duct dimensions, therefore, range from two to ten meters long and up to one square meter of cross-sectional area.

2.0 CONCLUSIONS AND RECOMMENDATIONS

Electromagnetic thrusters offer a silent, nearly undetectable means of submersible propulsion. Based upon efficiency calculations included in this study though, it seems unlikely that a practical thruster system could be developed for a full size (2000 ton, 10 m hull diameter) submarine. The chief reason for this conclusion lies in the difficulty of establishing high magnetic field intensities throughout the active pumping region contained between the electrodes. A reasonably efficient thruster cannot be designed and built until a superconducting dewar/winding capable of functioning reliably in a submersible environment has been demonstrated. Once this has been achieved, then efficiencies of ten percent or more may be possible for reduced hull sizes of one to three meters diameter, provided that speed is limited to approximately ten knots or less. It may be feasible to use electromagnetic propulsion for manuevering small submersible platforms requiring either modest continuous thrust or occasional bursts of high thrust levels.

In general, efficiency may be improved by:

- minimizing thrust requirements....small hulls operating at low velocities.
- using large areas, low velocity thrusters....multiple thrust-ducts are the most practical way of achieving this objective without requiring excessive cross-sectional area per duct.
- operating at high magnetic fields.....preferably at field intensities much greater than that of conventional ironcopper magnetic circuits--hence, superconducting excitation is mandated.
- enhancing conductivity....seeding seawater with a strong electrolyte such as hydrochloric acid has a pronounced

effect upon overall efficiency. The rate and duration of seeding is limited, of course, by on-board storage capacity. Development of an electromagnetic thruster should proceed in several stages:

- Define the mission requirements -- range, speed, depth, hull drag, power source, and acceptable levels of magnetic leakage.
- Demonst te the capability of establishing a high-intensity (~5 Tesla) magnetic field throughout a significant duct volume. This requires design and fabrication of a superconducting dewar/winding capable of functioning reliably in a submersible environment. One possible annular thruster configuration is shown in Figure 33 where a superconducting toroidal^{*} field winding establishes high fields in the pump annulus with relatively low leakage into the surrounding region.
- Construct and test a prototype thruster.
- For military applications, the possibility of detection should receive critical evaluation, and provision should be made to evaluate magnetic field leakage, hydrolysis, and chemical activity (such as pH shift due to seeding) as potential means of detection.

Large superconducting toroidal magnets have, in fact, been successfully used in radiotherapy.⁽⁹⁾

3.0 BACKGROUND

3.1 General Description

Electromagnetic (EM) propulsion of sea vessels may be divided into three categories: internal duct dc; external field dc; and peristaltic ac induction. All three types of propulsion have been analyzed and discussed in the literature. (1-4) Here we present a brief description of these three.

The first type of thruster--internal duct dc--consists of electrodes mounted within a propulsion duct such that current (in the conducting fluid) established between the electrodes is perpendicular to a magnetic field established within the same region, but perpendicular to the direction of current flow. (See Fig. 2 for a pictorial diagram.) Interaction of current and magnetic field produces a mutually perpendicular pressure gradient or force directed along the duct axis. If the duct is open at either end, this gradient causes fluid flow and, hence, an axial reaction thrust. While in principle electromagnetic propulsion may be achieved quite easily by passing current between two electrodes located within a magnetic field, in practice the low value of electrical conductivity of seawater places a severe constraint on overall thrust efficiency that may be achieved.

The second type of thruster--external dc field--does not utilize thrust ducts. Instead, exterior electrodes are mounted along the hull and an external magnetic field is established such that interaction of electrode current and field produces external pressure gradients along the submersible's centerline, thereby creating propulsive thrust. Once again, though, the low conductivity of seawater limits ultimate thrust efficiency. A useful system requires superconducting excitation that establishes high magnetic fields throughout large volumes of water:

however, not only are such superconducting magnets expensive and difficult to build, but the resulting unshielded, easily detectible fields are most likely not suitable for military applications.

Finally, the third type of electromagnetic thruster--peristaltic ac induction--utilizes a flexible membrane to separate two fluid regions: one, an annular chamber containing a highly conducting fluid such as liquid metal; the other an inner cylindrical chamber open to the surrounding water. Radial ac magnetic fields induce circumferential ac currents in the outer (highly-conducting) annular chamb c and these currents interacting with the induction fields generate pressure waves that impart axial motion to the conducting liquid. This, in turn, distorts the flexible membrane, thereby imparting axial motion to the water core. In short, traveling waves along the membrane squeeze the inner core, squirting water axially, thereby generating reaction thrust. While peristaltic induction may offer attractive efficienc; and performance characteristics due to the high conductivity of the enclosed fluid (liquid metal), it does pose significant reliability and safety problems: the efficient liquid metals react chemically with most engineering materials--including water.

In summary, while all three types of electromagnetic propulsion pose significant technical problems, the internal duct design is simpler and probably more reliable than the others, and this work was commissioned specifically for a study of internal duct dc propulsion.

3.2 Performance Calculations

This section deals with specific items relating to performance evaluation, namely:

- choosing a primary measure of performance;
- separating the various interrelated parameters into dependent and independent variables;
- defining ranges of independent parameter variation.

3.2.1 Measure of Performance

Since many interrelated parameters enter into the performance calculations, we must decide upon the key or fundamental relationships that we wish to examine: ultimately, what are we interested in comparing? Useful thrust vs. input power at a fixed cruising speed? Or, cruising range vs. stored energy as a function of hull size? Or, maximum speed vs. electrode size as a function of magnetic field?

As mentioned earlier, internal duct E-M thrusters have an inherently low power conversion efficiency, and this is perhaps a most crucial measure of performance. Most of the results obtained in this study, therefore, are given in terms of ideal^{*} efficiency as speed curves for several hull sizes. Additional curves show the effects of conductivity enhancement (HCL seeding) as well as magnetic field intensity upon efficiency. Finally, the last curves show overall input power and thrust power as a function of speed for several hull sizes.

3.2.2 Parameter Specification

Clearly, we are not able to choose independent values for each of the interdependent parameters that influence performance. If, for example, we specify electrode voltage and current, then for a given duct size, the thrust requirement (hull drag) determines magnetic field intensity as a function of speed: all of these quantities cannot be selected independently. Mathematically, we cannot exceed the degrees of freedom that exist between the performance equations.

Our approach, therefore, has been to permit electrode voltage and current to remain unspecified--they are dependent variables whose values are determined as a consequence of other parameter selections. Since dc electrical power sources may be configured to match or nearly

^{*}Ideal in that electrolysis and hydrodynamic thruster losses are not included (see Sections 4.2, 4.9, and A-1). Magnetic excitation loss, either in terms of ohmic power dissipation (conventional magnet) or refrigeration power (superconducting magnet) are also not included in these calculations.

match most power requirements (e.g., 10 volts at 200 mm or 200 volts at 10 amps), this is a reasonably prudent engineering approach.

The following parameters are treated as independent variables and must be specified:

- magnetic field
- electrode length
- cross-sectional area of duct
- number of ducts
- fluid conductivity

3.2.3 Range of Parameter Variation

Lastly, the ranges of variation must be specified, and here again we are guided by practical engineering limitations rather than theoretical speculation. All five of the independent variables listed above are related in the sense that choosing one places practical constraints on the others. An extremely high, uniform magnetic field, for instance, cannot be established throughout a large volume. Duct dimensions must reflect this: we cannot seriously discuss duct lengths of hundreds of meters, nor can be consider cross-sectional areas greater than one or two square meters. The following ranges, therefore, were defined and specific calculations made for various combinations of these values:

Variable

Range

- Duct Area 0.25, 0.5, 1 square meters
- Electrode Length 2, 10 meters
- Magnetic Field 0.5, 2, 5 Tesla (2 to 5 T implies superconducting excitation)

It should be noted, however, that designing an actual thruster system may require several iterations wherein the thruster performance equations first determine an approximate power source; then actual power source terminal characteristics - such as would be available from various combinations of, say, submarine batteries - could be used for design modifications. An important part of this iteration would be variations in the aspect ratio, as discussed later in Section 4.9.

- Number of Ducts 1, 4, 9, 16 (Each of the multiple ducts has the same cross-sectional area and electrode length. That is, one duct is not subdivided into multiple channels such that the total thrust area remains constant, but rather the total duct area increases by factors of 4, 9, and 16.)

4.0 THRUSTER PERFORMANCE CALCULATIONS

4.1 Thruster Model

Water-jet thrusters work on the principle of momentum conservation: an increase in stream momentum from intake to discharge produces a net reaction thrust. As shown in the pictorial sketch of Fig. 2, the electromagnetic thruster is composed of three sections: 1) converging inlet nozzle; 2) electrode-magnetic field region; 3) converging discharge nozzle. Definitions of the electrode (or pumping) region dimensions are also given in Fig. 2.

The converging inlet nozzle provides a smooth transition from the free-stream region immediately ahead of the intake to the internal pumping region, and if we assume that at a fixed uniform cruising speed, v_g^* , the inlet area is just large enough to provide the volumetric flow required, then no power will be expended drawing water into the inlet from ahead of the inlet plane. Matching the converging inlet opening to cruising speed also has the advantage of minimizing the thruster's displacement drag in that incident flow is directed into the duct, rather than around it.

The electrode or active pumping region consists of parallel electrodes mounted along the channel walls with a magnetic field established normal to the current-flow direction. The rectangular cross-sectional area, A_p , is assumed to be constant throughout the electrode region.

The third and last section of the thruster is the converging nozzle, which directs flow from the pumping region to a discharge orifice.

See Nomenclature for symbol definitions.

4.2 Assumptions

In the calculations that follow, the following assumptions have been invoked unless otherwise noted:

Thrust = velocity-squared drag

The thrust required to maintain a fixed speed is equal to total drag. Total hull drag, we assume, may be described by one equivalent drag coefficient that includes both frictional and displacement components. Total drag is then proportional to velocity squared times the cross-sectional area (see Fig. 1 for curves of drag vs. speed. Also see Appendix 1 for a comparison with more accurate drag calculations).

Negligible thruster drag

Based upon a thruster design that utilizes a converging inlet nozzle, this is a reasonable assumption (see Appendix 1 for details).

- Negligible electrode-electrolysis losses (electrolysis voltage << pt p voltage). The validity of this assumption depends to a large extent upon the aspect ratio, see Section 4.9.
- Nozzle inlet velocity = relative velocity between submersible and surrounding water
- Absence of cavitation within the inlet nozzle

A convergent inlet nozzle forces a static pressure drop with respect to the inlet or free stream pressure. Assuming no cavitation is equivalent to assuming that the submersible depth is great enough such that the absolute pressure at the pump inlet (P_{in}) is greater than the vapor pressure of water (several psia).

4.3 Thruster Performance Equations

(See Fig. 2 and the Nomenclature for symbol definitions.) From the conservation of momentum, we have

thrust = outlet momentum - inlet momentum

or

$$T = m(v_{out} - v_{in})$$
(1)

where the main flow, m, is given by

$$n = \rho \mathbf{v}_{p} \mathbf{A}_{p} = \rho \mathbf{v}_{s} \mathbf{A}_{in} = \rho \mathbf{v}_{out} \mathbf{A}_{out}$$
(2)

Combining these two equations, we can express thrust as

$$\Gamma = \dot{m} v_{p} \left(\frac{A_{p}}{A_{out}} - \frac{v_{s}}{v_{p}} \right) = \rho A_{p} v_{p}^{2} \left(\frac{A_{p}}{A_{out}} - \frac{v_{s}}{v_{p}} \right)$$
(3)

But thrust developed by the duct is equal to the submersible's drag force

$$D = (C_{D}A_{s}\rho/2)v_{s}^{2} = K_{s}v_{s}^{2}$$
(4)

or

$$T = K_{s} v_{s}^{2}$$
(5)

where $K_s = C_p A_s \rho/2$

7

Combining Eqs. (3) and (5), we get for k_1 the ratio of internal duct velocity to inlet velocity

$$k_{1} = \frac{v_{p}}{v_{s}} = \frac{A_{out}}{2A_{p}} \left[1 + (1 + 4K_{s}/\rho A_{out})^{1/2} \right]$$
(6)

Also, note that from Eq. (2), $v_p = v_s A_{in}$, so that $k_1 = A_{in}/A_p$ = ratio of inlet area to area of pumping region.

4.3.2 Pressure Relationships (neglecting hydrodynamic losses)

Inlet

Applying the Bernoulli Equation, we have

$$P_{o} + 1/2 \rho v_{s}^{2} = P_{in} + 1/2 \rho v_{p}^{2}$$
 (7)

Rearranging and using the pressure differential ΔP_{in} yields

$$MP_{in} = P_{o} - P_{in} = 1/2 \rho (v_{p}^{2} - v_{s}^{2})$$

or

$$\Delta P_{in} = 1/2 \rho v_p^2 (1 - (v_s/v_p)^2)$$
(8)

Exit Nozzle

Again, applying the Bernoulli Equation we have

$$P_z + 1/2 \rho v_p^2 = P_o + 1/2 \rho v_{out}^2$$
 (9)

then the nozzle pressure drop is

$$P_z = P_z - P_o = 1/2 \rho (v_{out}^2 - v_p^2)$$

or using Eq. (2) to express v_{out} in terms of v_p , we get

$$\Delta P_{z} = 1/2 \rho v_{p}^{2} \left[\left(\frac{A_{p}}{A_{out}} \right)^{2} - 1 \right]$$
(10)

Pump

F

pump head =
$$\Delta P_p = P_z - P_i = \Delta P_z + \Delta P_in$$
 (11)

Substituting from Eqs. (8) and (10):

$$\Delta P_{p} = 1/2 \rho v_{p}^{2} \left[\left(\frac{A_{p}}{A_{out}} \right)^{2} - \left(\frac{v_{s}}{v_{p}} \right)^{2} \right]$$
(12)

But from Eq. (6), $v_p = k_1 v_s$ and we can express the pump head in terms of the relative velocity, v_s :

$$\Delta P_{p} = 1/2 \rho v_{s}^{2} \left[k_{1}^{2} \left(\frac{A_{p}}{A_{out}} \right)^{2} - 1 \right]$$
(13)

This is the pump head or pressure differential that must be generated electromagnetically in order to sustain the relative velocity v_s . If the pump pressure satisfies this requirement, then thrust = drag at speed v_s .

4.3.3 Electromagnetic Pressure

Neglecting electric and magnetic fringe effects near the electrode edges, we have:

$$\Delta P_{p} = JBL = \sigma BL \left(\frac{V}{2b} - v_{p}B \right)$$
(14)

*See Appendix A-2 for a derivation of this equation.

4.3.4 Voltage and Current

Substituting for $\Delta P_{\rm p}$ from Eq. (13) and solving for the electrode voltage, V, we get

$$V = \frac{\rho v_s^2 bf}{\sigma BL} + 2Bv_s k_1 b$$
(15)

where $f = [(k_1 A_p / A_{out})^2 - 1].$

Now we can use Eqs. (13), (14), and (15) to solve for the current density, J, and hence the total current, I (= 2aIJ):

$$I = 2aL\sigma \left(\frac{V}{2b} - v_{p}B\right)$$
$$I = \frac{a \rho v_{s}^{2}}{B} \left(\left(k_{1}A_{p}/A_{out}\right)^{2} - 1\right)$$

or

$$I = a \rho v_s^2 f/B$$
(16)

where f is the dimensionless parameter given above.

4.3.5 Efficiency

Pumping efficiency, n, is the ratio of thrust power to electrical input power

$$\eta = 1 v_s / IV \tag{17}$$

Substituting from Eqs. (5), (15), and (16), we have

$$n = 2K_{s} / [A_{p} \rho f k_{1} (f / (2k_{1}^{2}N) + 1)]$$
(18)

where again $f = \{ (k_1 \wedge A_1)^2 - 1 \}$ and we introduce the interaction parameter N, a measure of the interaction between electromagnetic and inertial body forces in the fluid, defined as

$$N = 0B^2 L^2 r v_p$$
(19)

Efficiency may also be expressed in terms of the propulsive and electrical efficiencies, which are defined, respectively, as

$$n_p = \frac{T_V}{W_f}$$
(20)

$$\eta_{e} = \frac{W_{f}}{1 \cdot V}$$
(21)

where the fluid power, $W_1 = v_p \Delta P_p \Delta_p$.

Substituting from the previous expressions for these quantities. We have

with

$$n_{p} = \frac{2}{k_{T} A_{p} / A_{out} + 1}$$
(23)

$$\eta_{e} = \left[1 + \frac{1}{2N} \left(\frac{A_{p}}{A_{out}}\right)^{2} - \frac{1}{k_{1}^{2}}\right]^{-1}$$
(24)

From Eq. (34) we note that efficiency increases as the nextle discharge area A_{out} approaches the pump area. A_p . To maximize overall efficiency, then, we set $A_{out} = A_p$. This corresponds to the maximum cross-sectional discharge area consistent with no nextle cavitation. and the governing equations become:

.. Velocity ratio:

$$k_{1}^{k} = \frac{\nabla v}{\nabla v} = \frac{A_{1}}{A_{p}} = (1/2) [1 + (1 + 4K_{s}/A_{p})^{1/2}]$$
(25)

Electrode voltage:

$$W = 2Bv_{s}k_{1}b_{1}(f/(2k_{1}^{2}N) + 1)$$
(26)
where $f = (k_{1}^{2} - 1)$ and

N = interaction parameter defined above.

Electrode current:

$$I = a \rho v_{S}^{2} f/B$$
⁽²⁷⁾

• Efficiency:

$$n_{p} = 2/(k_{1} + 1)$$

$$n_{e} = \left[1 + \frac{1}{2N} \left(1 - k_{1}^{-2}\right)\right]^{-1}$$
(28)

where overall efficiency $\eta = \eta_p \cdot \eta_e$.

Equations (25) through (28) provide a basis for evaluating performance of a single duct propulsion system.

4.3.6 Multiple Duct Performance

The single duct equations may be adapted to multiple duct analysis simply by altering the thrust coefficient, K_s . Let $K'_s = K_s/n =$ thrust requirement for each of n ducts. Then we get the following multiple duct relationships:

• per duct velocity coefficient:

$$k_1' = v_p'/v_s = (1/2) [1 + (1 + 4K_s'/\rho A_p')^{1/2}]$$
 (6')

where A_p' = area per duct

electrode voltage:

$$V' = 2Bv_{s}k_{1}'b'(f'/(2k_{1}'^{2} \cdot N') + 1)$$
where $f' = k_{1}'^{2} - 1$, $N' = \sigma B^{2}L/\rho v_{p}'$
(26')

electrode current:

$$I' = a' \rho v_g^2 f'/B$$
(27')

efficiency:

$$n' = [2/(k_1' + 1)] \cdot [1 + (2N')^{-1} (1 + k_1'^{-2})]^{-1}$$
(28')

Suppose, then, that we compare the performance of n parallel ducts to a single duct where the combined parallel duct pumping area is equal to that of the single duct (that is, $A_p' = A_p/\overline{n}$, $a' = a/\sqrt{n}$, $b' = b/\sqrt{n}$) then:

 $k_{1}' = k_{1}, f' = f, N' = N$ $I' = I/\sqrt{n}, V' = V\sqrt{n}$ $\eta' = \eta$

And we see that there is no change in efficiency. If, however, we retain the same area per duct, but add n parallel ducts $(A_p' = A_p, a' = a, b' = b)$ then the velocity ratio k_1' is given by:

$$k_{1}' = (1/2) [1 + (1 + 4K_{s}/\rho nA_{p})^{1/2}]$$
 (29)

In this case, $k_1' < k_1$, due to the "n" factor appearing in the denominator. Also, we find f' < f and N' > N. Substituting these inequalities into Eq. (28'), we find that the multiple duct efficiency increases (n' > n). Thus, increasing the total thrust area by adding

parallel ducts decreases the inlet-to-pump velocity ratio and increases efficiency.

4.4 Efficiency Plots

Efficiency plots based upon Eq. (28') are given in Figs. 3 to 26, where calculated, ideal efficiencies (based upon the assumptions discussed earlier) are plotted as a function of submersible velocity, v. Each plot contains a set of curves obtained using drag characteristics for three hull sizes, as given in Fig. 1. For each hull size, single duct efficiency is plotted along with several curves showing the effect of four, nine, and sixteen multiple ducts. The figures are arranged in three groups of eight, each group corresponding to ascending magnetic field intensities of 0.5, 2, and 5 Tesla, respectively. Within each group, electrode lengths of 2 and 10 meters are combined with duct areas of .25, .5, .75 and 1.0 square meters. As may be seen from the curves, efficiencies vary from less than .01 to over 99 percent. It must be emphasized that these plots are useful for comparing and indicating sensitivity of ideal performance to parameter variations--all of these combinations are not necessarily realistic. Sixteen thrusters, with a combined cross-sectional area of sixteen square meters propelling a onemeter diameter hull does not, for instance, represent a realistic configuration. But one such thruster propelling this size hull may be entirely feasible.

Not surprisingly, these plots show that efficiency improves as electrode length, magnetic field, duct area, and the number of ducts increase. Low thrust requirements due to less drag (smaller hull sizes) also improves efficiency.

4.5 Conductivity Enhancement: HCL Seeding

As indicated by the performance equations derived in Section 4.3, electrical losses diminish and thrust efficiency increases as fluid conductivity increases. The conductivity of seawater, which has a

nominal value of about 4 mhos/m, increases significantly with the addition of a small percentage of hydrochloric acid (HCL). Neglecting possible increases in electrode corrosion rates, conductivity enhancement in a thruster may be accomplished by injecting HCL into the inlet nozzle where mixing and diffusion tends to create a uniform mixture prior to the electrode region. While from an efficiency consideration there is strong incentive to inject large amounts of HCL, the benefits of conductivity enhancement must be balanced against the limitations of solute storage capacity on board the submersible. As a compromise between these conflicting requirements, we have arbitrarily chosen a 0.5% solution (.14 molar concentration of HCL), which effectively doubles the bulk (6) conductivity of seawater from 4 mhos/m to 8 mhos/m. Figs. 27-29 show the effects of conductivity enhancement upon ideal efficiencies for full, third, and tenth size hulls, respectively. Note that the basic thruster-duct size $(2 \text{ m x } .25 \text{ m}^2)$ is identical in all three cases, but that the number of ducts attached to each hull varies from: sixteen ducts, full-size hull; nine ducts, third-size hull; four ducts, tenth-size hull. These configurations are more representative of actual design possibilities than, say, a fixed number of ducts for all three sizes.

Seeding flow rates shown on the plots vary from 9400 gpm at 20 knots, full-size hull to 71 gpm at 2 knots, tenth-size hull. In general, efficiency increases somewhat less than the factor of two increase in conductivity.

4.6 Sensitivity of Efficiency to Magnetic Field Strength

Ideal efficiencies for the three hull sizes and duct combinations (described in Section 4.5) are plotted in Fig. 30 for a fixed speed of 5 KTS and magnetic field variations from .5 to 5 Tesla. Although data for th. e plots are contained in the basic efficiencies curves given in Figs 2 to 26, Fig. 30 more clearly illustrates the magnetic field dependence where an order of magnitude change in field intensity yields efficiency changes of nearly two orders of magnitude. As shown in the

figure, conventional excitation is limited to less than 2 Testa due to saturation of ferromagnetic materials used in magnetic circuits.

4.7 Power Requirements Vs. Speed

Total thrust power and electrical input power curves over a speed range of 2 to 20 knots are shown in Fig. 31 for the duct-hull combinations described in Section 4.5. These plots, which are based on a 2 T magnetic field intensity, underline the importance of low speed operation: doubling the cruising speed from 5 to 10 KTS, for instance, increases the total input power requirement by a factor of ten.

4.8 Efficiency as a Function of Interaction Parameter

r

The electrical and propulsive efficiency expressions given by Eqs. 28 and 29 may be greatly simplified by substituting some typical values for the interaction parameter. Since the order of magnitude is determined mainly by the σ/ρ ratio ($\simeq 4 \cdot 10^{-4}$) in the expression $N = \sigma B^2 h/\rho v_p$, we can safely assume N << 1, or N is less than .01. And if the velocity ratio k_1 is much greater than 1 ($k_1 >> 1$), then from Eqs. 28 and 29 the overall efficiency $\eta < (.5)$ (2N) or $\eta < N$. That is, the efficiency is less than one percent. If, on the other hand, we assume $k_1 = 1+\varepsilon$ where $\varepsilon << 1$ (that is, the velocity differential $v_p = v_e \simeq \varepsilon v_e$), then

$$n_p = \frac{2}{2 + \epsilon} = \frac{1}{1 + \epsilon/2} = 1 - \epsilon/2$$
 (30)

and

$$e = \frac{1}{1 + (\varepsilon/N)}$$
(31)

These expressions indicate that reasonable efficiencies may be achieved, provided that ε , the velocity differential, is of the same order as the interaction parameter, N. This is illustrated by the curve in Fig. 32.

In addition to efficiency, though, a practical design must include other considerations such as: electrode voltage and current, and overall pump dimensions. While simply meeting the $\varepsilon \approx N$ criterion does not guarantee a practical design, the performance expressions discussed here do indicate the sensitivity of overall efficiency to the v_p/v_s ratio.

4.9 Performance as a Function of Aspect Ratio

Although overall ideal efficiency is independent of aspect ratio, actual efficiency will depend to some extent on internal shape of the thruster ducts. This arises for two reasons:

- Viscous drag increases with wetted surface area. A square duct (α=1), therefore has minimum viscous drag. (See Appendix 1 for a detailed discussion of duct drag.)
- Electrolysis voltage remains nearly constant over a wide range of operating current densities. The ratio between this fixed voltage and the total electrode voltage, though, diminishes as the aspect ratio increases. That is, a duct cross section elongated in the direction of electrode separation requires a higher pump voltage and electrolysis losses become a small fraction of total electrical losses as the elongation increases.

Hence, we have two conflicting requirements, one for a unity aspect ratio in order to reduce viscous drag, the other for a high aspect ratio to minimize electrolysis losses. A careful trade-off analysis must be included in actual thruster designs.

A conventional copper-iron magnetic circuit will produce a more uniform field with reduced excitation losses as the aspect ratio increases. This, too, must be factored into the overall design.

The electrolysis potential at both the anodic and cathodic electrodes is ≈ 2 volts. Since this value is weakly dependent upon current density and strongly dependent on electro-chemical effects, it is realistic to assume a total electrolysis voltage of between five and ten volts.

5.0 GAS EVOLUTION THROUGH ELECTROLYSIS

Dissociation of water at the cathode discharges hydrogen gas along the electrode: two faradays of charge generates one mole (or 22.4 1 of H₂ at STP) so that:

$$Q_{\rm H_2}$$
 = hydrogen discharge rate = 5.210⁻³ I_{kA} 1/s (32)

This, of course, mixes with the thrust-exit stream of water and eventually bubbles to the surface. Using values for discharge flow and electrode currents associated, for example, with the full-hull size curves of Fig. 3, we have (at 20 KTS):

thrust stream per duct = $4.4 \times 10^3 1/s$

electrode current/duct = 104 kA

then

$$Q_{H_2} = .54 \, 1/s$$

and we find an extremely low hydrogen-to-water volume ratio. Evolved hydrogen gas along the electrode surfaces should not hinder electrode performance, nor present a noticeable bubble or foam wake at the surface. Also, it may be possible to construct a porous electrode that captures the evolved gases. Final verification of these conclusions and possibilities must be made experimentally.

6.0 PRELIMINARY DESIGN PROCEDURE

Designing an electromagnetic thruster requires many iterations through the performance equations in order to balance efficiency, physical size and magnetic field intensity with desirable electrical characteristics. The following procedure is offered as a plausible design approach:

- (1) Using the known drag vs. speed requirements (K_s) for a particular submersible and assuming a fixed number of thruster ducts of area A_p , find the velocity coefficient, k_1 from Eq. 29. This determines the inlet-to-pump cross-sectional ratio (A_{in}/A_p) .
- (2) Using Eqs. 26', 27', and 28', calculate voltage, cu.rent, and efficiency at various combinations of the following parameters:
 - aspect ratio (α)
 - pump length (L)
 - magnetic field (B)
 - velocity (v_s)

(3) Repeat steps (1) and (2) over the range of interest for:

- drag
- cross-sectional area per thrust-duct
- total number of thrusters

This procedure may be refined by including:

- duct drag (see Appendix A-1)
- electrolysis voltage (see Section 4.9)
- electromagnetic fringe effects
- inlet/outlet hydrodynamic losses

(These last two items should remain second order effects and are not pursued here.)

ACKNOWLEDGMENTS

The author wishes to express his thanks to Dr. I. R. McNab for his helpful comments and notes; to Dr. S. K. Chow and Mr. E. Owen for their discussions; and to Mr. C. Alexion for his assistance in preparing computer plots as well as Appendix A-1.

G. T. Hummert Tribology & Magnetofluidynamics Electrotechnology Department

APPROVED:

In K In he

I. R. McNab, Manager Tribology & Magnetofluidynamics Electrotechnology Department

APPROVED:

C. J. Mole, Manager Electrotechnology Department Chemical Sciences Division

REFERENCES

- Doragh, R. A., "Magnetohydrodynamic Ship Propulsion Using Superconducting Magnets", Proc. Naval. Arch. and Marine Engineers Transactions, Vol. 71, p. 370, 1963.
- Way, S., "Electromagnetic Propulsion for Cargo Submarines", AIAA/ SNAME, Advanced Marine Vehicles Meeting, Norfolk, VA, May 22-24, 1967, AIAA Paper 67-363.
- Neuringer, J. L., Migolsky, E., Turner, J. H., Haag, R. M., "Theoretical Investigation of a Peristaltic Magnetofluid Dynamic Induction Compressor-1", Journal of Ship Research, p. 56, March 1965.
- Resler, E. L., "Magnetohydrodynamic Propulsion for Sea Vehicles", Seventh Symposium Naval Hydrodynamics, Rome, Italy, p. 1437, August, 1968.
- Adamson, A. F., Lever, B. G., Stones, W. F., "The Production of Hypochlorite by Direct Electrolysis of Seawater: Electrode Materials and Design of Cells for the Process", J. App. Chemistry, Vol. 13, p. 483, 1963.
- Weast, R. C., Ed., CRC Handbook of Chemistry and Physics, CRC Press, Inc., Cleveland, 1977, pg. D-218, 231, 252, 268.
- Baumeister, T. and L. Marks, Standard Handbook for Mechanical Engineers, McGraw Hill Book Company, New York, 1961, pages 11/49.
- 8. Hughes, W. F. and Young, F. J., "The Electromagnetodynamics of Fluids", John Wiley & Sons, New York, 1966.
- Stekly, Z. J., Lucas, E. J., Punchard, F. B., "A Large Toroidal Coil System for the Stanford Medical Pion Generator", Fifth International Conference on Magnet Technology (MT-5), Roma, Italy, April 21-25, 1975, pp. 419-423.

COMPUTER PROGRAM

Record of Transmittal within Westinghouse

Westinghouse Research Laboratories

	9/	1	9	17	19	
Date	1		1			

* To:	Distribution List		
This ship	nent contains:		
The comp	uter program	SUBCAL	
		(title)	
and/or the	following documents	s describing the above or other	computer programs:
Research			Proprietary
No.	Author	Title	Class

<u>No.</u>	Author	Title	Class
9B2-EMSUB-R1	G. T. Hummert	An Evaluation of Direct Current Electromagnetic Propulsion in Seawater	2

If you wish to send this material outside of Westinghouse, you must obtain approval from the Supervisor, Computer Center. This approval will be in accordance with the policy set forth in Chairman's Letter No. 3 dated August 11, 1969. For purposes of this policy, the Research Laboratories considers this program to be in Class \underline{A} . (A, B, C, or D)

79-

Sender	G. T. Hummert		
Address	401-406	Phone	5717

* One copy of this sheet must accompany every copy of the program or document transmitted outside the Research Labs. In addition, send one copy to E. J. Duckett, 801-3rd, and one to N.A. Mascia, 401-2B5.

For definitions of classes, the sender is directed to Research Laboratories Operation Manual, Section 5.2.7. If assistance is needed, contact the Computer Center Supervisor, N.A. Mascia (WIN 236-7741).

Curve 717913-A

Fig. 1 - Drag characteristics used for performance calculations

.

Dwg. 7761/23

1

Fig. 2 — Pictorial diagram of internal duct thruster with converging inlet and outlet nozzles. Details of electrode region showing configuration used for duct analysis

FIGURE 3

I

43

Statistics

46 -

Curve 717915-A

Curve 717917-4.

Fig. 28 - Efficiency improvement via HCL seeding: third-size hull

Curve 717916-A

Efficiency (%)

Curve 717518-A

Curve 717914-2

Curve 717919-4

Fig. 33 — Annular pump configuration utilizing superconducting excitation. The toroidal winding establishes a high circumferential field in the pump region with low external flux leakage

APPENDIX A-1

SUBMERSIBLE HULL AND THRUSTER DRAG

The following calculations are presented to evaluate the frictional and total drag forces on a streamlined submersible of typical sizes and proportions moving at reasonable speeds, and to compare the frictional drag on a typical thruster to the total drag on the submersible. The frictional drags on the submersible and thruster are calculated by a standard velocity-squared formula that involves velocity-dependent parameters. However, the total drag characteristics used in Equation (5), Section 4.3, consist of a simple velocity-squared relationship and <u>constant</u> parameters. Therefore, discrepancies are likely to occur when comparing the total drag as given by Equation (5) to more accurate frictional drag calculations. The question is: "Are these discrepancies significant when compared to the total drag?"

Streamlined Hull Drag

The drag force, as used in the performance calculations in Section 4, is given by:

$$F_{d} = K_{s} v_{s}^{2}$$
(5)

where K_s was determined from supplied drag vs velocity data. In order to compare this to a more accurate frictional drag, we must specify the size, shape and, hence, total submerged surface area. To do this, we assume the hull shape may be approximated by a prolate spheroid whose total surface, S, is given by:

$$S = 2 \pi a^{2} + (\pi b^{2}/\epsilon) \cdot \ln [(1 + \epsilon)/(1 - \epsilon)]$$
 (A-1.1)

where 2a is the major axis, 2b is the minor axis, and ε is the eccentricity of the elliptical cross section:

$$\varepsilon = \sqrt{1 - (b/a)^2} \qquad (A-1.2)$$

For each hull diameter, we chose a length (and eccentricity) such that the calculated frictional drag at approximately 8 knots equals the drag given by Equation (5). The three hull sizes and shapes are summarized in the following table:

Hull Dia. (m)	Length (m)	Volyme (m)	Surface Area (m ²)	Eccentricity	Displacement (Tons)
10.0	50.0	2620	4290	.980	2890
3.3	15.5	88.4	417	.977	97.4
1.0	4.35	2.28	33.2	.975	2.46

For each combination of submersible size and speed, the Reynolds' number for the resulting flow is calculated:

$$R = v_{e} \ell/\nu \qquad (A-1.3)$$

where v_s is the free-stream speed, ℓ is the length of the submersible, and ν is the kinematic viscosity of sea water. The coefficient of friction, C_F , is interpolated from a standard table⁽⁷⁾ that lists C_F for various values of R. (It should be noted that all of the flows are turbulent; hence, the coefficient of friction decreases for increasing Reynolds' number.) Then, the frictional drag force is calculated:

$$F_{f} = 1/2 \rho C_{F} S v_{S}^{2}$$
 (A-1.4)

where ρ is the density of sea water, C_F is the frictional coefficient, S is the wetted surface area (equal to the total surface area in all cases), and v_s is the free-stream speed of the submersible. Comparison between the simple velocity-squared drag used in Section 4 and the more accurate frictional drag is shown in Figure Al-I. As shown in the figure, values of these two forces agree to within twenty percent for each of the three sizes, over a speed range of up to 20 knots. We conclude that the approximations for C_D and S incorporated in the constant K_s are reasonable.

Thruster Frictional Drag

The calculations for frictional drag on a thruster duct are very similar to the hull drag calculations. For the purpose of making a specific hull to thruster drag comparison, the duct length was chosen as 2 m and the cross-sectional area as .25 m² (this does not include inlet shroud or outlet nozzle surfaces). For these calculations the aspect ratio, α , ranges from 1 to 20. The internal surface area is exactly:

$$S = 4 La (1 + \alpha)$$
 (A-1.5)

where a is the duct half width and L is the length. The coefficient of friction is taken from the same data (7) for flow over a smooth flat plate (2-sides).

Frictional force is calculated for various speeds using Equation (A-1.4). Figure A-1.2 compares duct drag obtained using this formula to hull drag taken from Figure 1. As may be seen from the figure, an aspect ratio of 1 produces the minimum drag, and the drag per duct is less than ten percent of the total drag for the small hull and less than one percent of the total for the larger hull.

Curve 717911-A

urag (IDS.)

APPENDIX A-2

ELECTROMAGNETIC COUPLING TO CONDUCTING FLUID FLOW

For fully developed incompressible flow, the vector equation of motion is given by:⁸

$$\overline{f}_{b} = \overline{\nabla}P - \mu_{f} \nabla^{2} \overline{\nu}$$
 (A-2.1)

where \overline{f}_{b} = body force $\overline{\nabla}P$ = pressure gradient $\overline{\nabla}f^{2} \overline{v}$ = viscous force density

Neglecting viscous forces and considering one-dimensional (x) motion, we have

$$\frac{\partial P}{\partial x} = (f_b)_x$$
 (A-2.2)

The electromagnetic body force density in a conducting fluid is given by

 $\overline{f}_{b} = \overline{J} \times \overline{B}$ (A-2.3)

where \overline{J} = current density

y

 \overline{B} = magnetic field

If \overline{J} and \overline{B} are mutually perpendicular to the direction of fluid motion, as depicted in the sketch, where $\overline{J} = \hat{z} J$, $\overline{B} = -\hat{y} B$, then

$$\vec{f}_{h} = \hat{X} J B$$
 (A-2.4)
and from Equation (A-2.2), we have for the pressure gradient,

$$\frac{\partial P}{\partial x} = J B$$
 (11-2.5)

Assuming uniform current and magnetic field intensities, over electrode length L, we may integrate this expression to obtain for the pressure rise across the pump:

$$\Delta P_{p} = \int_{0}^{L} J B dx = J B L \qquad (A-2.6)$$

which is the desired expression relating pressure to urrent density, magnetic field, and electrode length.

Now we wish to relate current density to the difference in potential, V between the electrodes. Here we invoke Ohm's law in terms of a vector field equation for a moving medium.

$$\overline{J} = \sigma \left(\overline{E} + \overline{v} \times \overline{B}\right)$$
 (A-2.7)

where c = conductivity of moving medium

B = magretic field

 $\overline{v},\overline{E}$ = velocity and electric field as seen by stationary observer Once again neglecting fringe effects, and separating the electrodes by a distance 2b along the z axis we have:

 $\vec{E} = \hat{z} \quad V/2b$, $\vec{v} \times \vec{B} = -2 v_p B$

where $v_{p} = \hat{x}$ magnitude of velocity \bar{v} so that

$$J = \sigma (V/2b - v_p B) \qquad (A-2.8)$$

Finally, substituting from Equation (Λ -2.6), we obtain Equation (14) used in Section 4.3.3:

$$\Delta P = \sigma B L (V/2b - v B)$$
(14)

67

APPENDIX A-3

A3.1 Fortran Source Listing: Calculations of ideal efficiency, voltage and current as function of: magnetic field area number of ducts hull size electrode length

A3.2 Sample Printout

A3.1 Source

```
BRUN. /RNPT SUBCAL.09823NSFMD01.EMSUB.1.25

        ODATA:IL
        TPFS:

        DATA TRI SL74T9
        08/06/79
        11/29154
        (->0)

        DATA PRI SL74T9
        08/06/79
        11/29154
        (->0)

        DATA PRI SL74T9
        08/06/79
        11/29154
        (->0)

        DATA PRI SL74T9
        08/06/79
        11/29154
        (->0)

        10
        REAL K0.K1.KS
        20)
        XV(21).YV(21)

        11
        DIMENSION EFFARY(3.4.20).XV(21).VV(21)
        DIMENSION EFFARY(3.4.20).XV(21).VV(21)

               3. 4. 5.
                                                                                 EFFARY, XV, YV ALL USED FOR CALCOMP OUTPUT
                                          $5$$$$$$$
                $:
                                                                                     VS IN METERS/SEC
                8.9.0
                                                                                     AD IN SO METERS
                                                                                     KO IN NEWTONS/(M/S)002
LBS THRUST/KNOT002 = KS0ALPHA
              13.14.15.16.17.18.19.20.
                                                                                                                                               VS+BETA
                                                                                     SPEED IN KNOTS
                                                                                     RHO = DENSITY .KG/M++3
                                                                                      SIGMA = CONDUCTIVITY . MHOS
                                                                 KREF = 5000.
AD =.25
SIGMA = 4.
RH0 = 1.E3
VPRIME = 1.
ALPMA=((12.67).0.21.00973.) /((31.000).0.25.)
BETA = 5./2.57
VSO=VPRIME/BETA
VSO IN M/S
               21.
               23.
               27
28
30
31
32
33
34
35
36
37
38
37
                                              C
                                              JMAX = 4

LMAX = 1

KMAX=4

MMAX=3

NMAX=2

DO 100 M= 1.MMAX

IF(M.EQ.1) B = .5

IF(M.EQ.2) B = 2.

JF(M.GE.3) B = 5.
                  40.
41.
42.
                                                                                 DIST IN METERS
D0 200 N = 1,NMAX
IF(N+EQ-1) DIST = 2.
IF(N+GE+2) DIST=10.
                                                  CC
                                                  0000
                                                                        DO 300 K= 1.KHAX

RK =K

A = A0eRK

SIDE =SQRT(A)

DO 400 JSIZ = 1A<sup>3</sup>

IF(JSIZ.EQ.1) KO = KREF

IF(JSIZ.EQ.2) KO = KREF/100.

DO 400 J=1.JMAX

RJ=J

KS= KO/(RJORJ)

ALPMAK =ALPMAOKS

K<sup>1</sup> = (1.+SQRT(1.+4.oKS/(RH0OA)))/2.

F = K10K1 = 1.
                      64.
                      65.
                      $7:
$9:
                       70:
```

HRITE(LINE.101) KSIALPHAK.A.KI FORMAT(1H ./.*KS = E9.3.* NT/(M/S)2 = *.E9.3.* LB/(KT)2 *** 1 *AREA = *.F9.3.* SQ METERS*.t*** 2F9.3.* RATIO VIN/VS*./) #RITE(LINE.103) FORMAT(1H .SX.*VS(M/S) VS(MTS) B(TESLA) L(METERS) CUR(KAMP) 1 VOLTS PRESS(PSI) TM(KNTS) TM(KLBS) EFFICIENCY(%)*./) 33: 101 74. 75. ... 103 cc DO SOD L . I.LMAX COMPUTE EVFICIENCY FOR VE- 2, 20 KTS RL . L+1 C VS- VSD-RL BETAVS - BETA-VS 84. 00000 CONVERT VS TO KNOTS 70. V2R0 =(2++\$16HA+(8++2)+DIST)/RH0 EFF =(2++KS/(A+RH0))/(F+(V5+F/V2RU +K1)) 13. HERE WE ARE ASSUMING ASPECT RATIO = 1 , THEN 000000 AREA . SIDE CUR = SIDE=RH0+(VS+2)+((K1++2)+1+)/B USE SIDE/2 IN CURRENT EXPRESSION CUR=CUR/2. TH = KS+VS+02 THPDS =TH+(6+73+/31+E3) VOLT= TH+VS/(CUR+EFF) DELP = RH0+VS+VS+(K1+K1+1+)/2. CONVERT DELP FROM NT/SQU TO PS1 PS1 = DELP+1+45E-4 c C 0. BRITE(LINE.501) VS.BETAVS.B.DIST.CUR.VOLT. 1PS1.TH.THPOS.EFF FORMATCH .3X.4(F9.3.1X).-3PF9.3.1X.OPF9.3.1X.F10.2.1X 12(-3PF9.3.1X).2PF9.31 CONTINUE CONTINUE C 501 188 CC WRITE(LINE, JOI) FORMATIIN CONTINUE 301 STOP 100 133 ERRORS: NONE. TIME: 0.492 SEC. IMAGE COUNT: 124 END DATA.

OFIN

a = 4.0 mass/m

2

A3.2 Sample Printout

											DATE 072779	PAGE	12
		EL	ECTROMAGNE	TIC THRUST	PROPULSION		- 1.00			2.791=	RATIO VIN/VS		
Ks		.500+04	NT/(M/S)2	= .2974	03 LB/(KT)	***ANEA		and the first of t	THEENTS)	TH(KL85)	EFFICIENCY(1)	
		VS(H/S)	VSCKTS)	B(TESLA)	L(METERS)	CURCKAMP	VOLIS	PRESSURGES	5 284	1.189	.084		
		1.028	2-000	-500	2.000	7,177	898-550	1.12	11.889	2 . 674	-056		n.
		1.542	000	-500	3-988	28.708	3591.331	3.25	33-024	7-428	034		12
		2.570	5-000	:300	5:000	64.592	8078.344	4.68	64 . 728	14-560	-024	FULL SIZE	1
		3.598	2:000	:300	\$1999	1 4 83	4359.587	10.54	106.999	24.068	019	-	প
		4.626	9.000	:500	5:000	170 423	2435.061	13.01	132.098	35.953	015	1 DateT	
		5.654	11.000	- 500	1:000	34.369	2304 .766	18.73	190.221	50-216	. 013		
		6.682	13.000	-500	2.000	11.669	3968.703	25.50	258.912	60.855	1011		
		7.710	15.000	500	2:000	459 .523	57426 870	33.30	338.171	76.067	:010		
		8.738	17.000	-500	3:888	321:331	72679.267	42.15	474-874	96.272	-009		
		9.766	19-000	-500	3:888	\$17.692	89725.896	\$2.03	528.392	118.854	.008		
		10.280	20.000	- 743	+07 18/(KT)	2 +++ARE	A = 1.0	DO SO METER	S+++K1 =	1.725=	RATIO VIN/VS	_	
Ks		.125+04	NT/CH/S/2		I (HETERS)	CURCKAMP	VOLTS	PRESS(PS1)	TH (KNTS)	TH(KLBS)	EFFICIENCYC	0	
		VS(M/S)	VSERTSJ	500	2.000	2.087	261-746	-15	1.321	.297	.249		
		1.028	3.000	:500	3:000	8.348	588-264	.61	5-284	1.189	.125		
		2.056	5.000	.500	2-000	13-943	1632-590	1.36	11.889	2-674	083		
		3-084	2.000	1300	2:000	25-564	3198.636	2.42	21.136	4.754	-062	4 Ducts	
		4.112	8-000	-500	2:000	11-111	2250-391	3.96	33:024	7.428	ŏŠÓ		
		5.140	10.000	.500	2:000	43.121	7895.886	4.58	39.960	10.697	-042		
21		6.168	12.000	-500	2.000	.11-171	11027-020	9-39	55-811	14.560	-058		
		2.196	14 000	1388	£:888	115:542	14080-015	8-51	74.305	19:017	:031		
		8.224	16.000	-500	2.000	150.777	18854.65	10.93	95.441	24.068	102a		
		9.252	18.000	500	2:000	188.341	23551-022	13-65	119.218	29.714	:023		
		10.280	20.000	.500	2.000	208.686	500Ae+ceB	000 50 8575		1.398	RATIO VIN/VS		
K	=	.556+03	NT/(H/S)2	s + 33	0+02 LB/(KT)2 +++ARI		BBESS(PST) TH(KNTS)	TH (KLBS)	EFFICIENCY	1)	
		VS(H/S)	VS(KTS)	BCTESLA) L(METERS) CURCKAM	VOLIS	07	.587	.132	- 473		
		1.028	2.000	-500	2.000	1.007	284.353	.16	1.321	.297	.237		
		2.056	4.000	.500	2.000	4.029	788.673	- 59	3.669	1.189	190		
		2-570	6.000	- 500	2.000	9.065	1135-258	.89	7.192	1.618	-136	9 Ducts	
		3-595	7.000	.500	2.000	16.115	2017.279	1.46	11.889	2-676	106		
		4-626	10.000	-200	2.000	23.180	3151.100	1.83	17.760	3.995	086		
		5-654	11.000		2.000	36.259	4536.723	2.63	24.805	5.580	•073		
		6.682	13.000	-500	2.000	49.353	6174-146	3.58	28.768	7.428	.063		
		7.710	15.000	500	2.000	56.655	8063.369	4.67	37.575	8.452	-026		
		8.738	17.000	.500	2.000	72.770	10204.393	5.91	47.555	10.697	-050		
		9.252	19.000	-500	2.000	90.900	12597.218	7.30	58.710	13.206	.048		
		10.280	20.000	.500	14402 18//1	1)2 +++4	EA = 1.	.000 SQ METE	ERS+++K1 =	1.250	= RATIO VIN/V	2	
K	5 =	.312+0	3 NT/(M/S)	2 = .10	1 / METER	s) rum(rAF	P) VOLTS	PRESS(PS)	D THERNTS) THEREBS) EFFICIENCY	(1)	
		VS(M/S)	VS(KTS)	BCTESL	NY LUNCIEN								

										DATE 072779	PAGE	13
		E CTROMAGNET 2				$\begin{array}{c} 74.948\\ 108.1503\\ 4690.674\\ 977.485.0074\\ 977.485.0074\\ 11707.570\\ 11707.570\\ 11727544.4\\ 4760.608\\ 4760.608\\ 6077.2.147\\ 7374.487\\ 4760.608\\ 6077.2.147\\ 737.486\\ 6077.2.147\\ 737.486\\ 6077.2.147\\ 737.486\\ 6077.2.147\\ 737.486\\ 6077.2.147\\ 737.486\\ 6077.2.147\\ 737.486\\ 6077.2.147\\ 737.486\\ 6077.2.147\\ 737.486\\ 6077.2.147\\ 737.486$		34247.407.409.537.000054 373.509.024.740.857.0400054 ********************************	074 -167 -4669 -9189 1-5857 -24638 -9189 1-5857 -2474 -4557 -2474 -5754 -754 -754 -754 -754 -754 -754	- 768 - 583 - 585 - 215 - 215 - 215 - 197 - 197	16 Ducis	
s =	.556+03	NT/(H/S)2	= .330+02	18/(KT)2	*******	1 = T+0 V0LTS	DO SO METERS PRESS(PSI)	TH (KNTS)	TH(KLBS)	EFFICIENCY	0	
	A2 (W\2) A2 (B12) A2 (B1	VSCRTS)	8 (TESLA) L • \$00 • \$00	REFERS/ - 000 - 0000 - 000 - 0000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 00	1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.000000 1.000000 1.0000000000	Construction C	07 • 166 • 466 • 897 1 • 483 - 229 • 483 - 229 • 466 • 897 - 483 - 229 • 465 • 897 - 483 - 229 • 466 • 897 - 466 - 483 - 229 - 246 - 483 - 229 - 246 - 483 - 229 - 467 - 467 - 483 - 229 - 467 - 485 - 477 - 485 - 477 - 485 - 477 - 485 - 477 - 485 - 477 - 4	521 521 521 521 52 57 57 57 57 57 57 57 57 57 57 57 57 57	-257850 -257850 -25850 -11702540 -258761702540 -2587557587587587 -5445788767 -5557587587587 -54457887 -55677 -55577887 -556778 -55778 -57788 -57		third size I Duct	
,	10.280	201000	.500	2.000	100.720	A = 1.1	DOD S& METER	\$+++K1 =	1.124=	RATIO VIN/VS		
(5 =	.139+03	NT/(M/S)2	B (TESLA)	(HETERS)	CUREKAMP) VOLTS	PRESS(PS1)	TH(KNTS)	TH(KLBS)	EFFICIENCY	1)	
	82260704 0245260 024560	2 0000 2 00000 2 0000 2 00000 2 0000 2 00			74047740 774047740 111774347888755170344700 111774349931870974904074 111774344540979870974904074 1117707440407	5.007 0.00 5.007 0.007 0.007 5.007 0.007 0.007 5.007 0.007 0.007 5.007 0.007 0.007 5.007 0.007 0.007 0.007 5.007 0		1470 587 921 1.7798 2.7947298 2.9977 1.7798 2.9977 3.44801 2.9976 3.44801 2.9976 3.44801 2.99564 90.66801 1.95664 90.682469 1.114 1.146666 1.146666 1.146666 1.146666 1.146666 1.146666 1.146666 1.146666 1.146666 1.146666 1.1466666 1.1466666 1.1466666 1.146666666 1.1466666666666666666666666666666666666	0354 05526 0556 0	1.543 1.07783 .52461 .52461 .2017 .2	4 Ducts	
Ks =	.617+02	NT/(H/S)2	= .367+0	1 LB/(KT)	CUR (KAMI	EA = T. P) VOLTS	PRESS(PSI)	TH(KNTS)	THERLES	EFFICIENCY	(1)	
	¥S(#/S) 1.028 1.542 2.056 2.570	2.000	.500 .500 .500	2.000	• 127 • 285 • 507 • 793	16.403 36.499 64.524 100.479	.01 .02 .04 .06	-065 -147 -261 -408	.015 .033 .059 .092	3.222 2.172 1.638 1.315		

1.11

					DA	TE 072779	AGE
	3.086 9.000 3.12 9.000 4.12 9.000 4.61 9.000 4.62 10.000 3.654 11.000 3.654 15.000 7.196 14.000 7.196 15.000 8.224 16.000 8.224 16.000 8.725 18.000 9.752 19.000 9.752 19.000 9.752 19.000	* 000 * 000	1.142 1.554 1.956 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.95000 1.95000 1.95000 1.95000 1.95000 1.95000 1.950000 1.95000000000000000000000000000000000000	08 587 111 587 111 32313 112 1032313 113 109754 1103 1097538	1 3 80 5 5 7 1 3 80 5 5 7 1 3 80 5 5 7 4 5 5 5 7 4 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	1.008 .023 .023 .025	:
Ks =	.347+02 NT/(H/S)2	= .206+01 LB/(KT)	2 ***AREA = 1.00	O SQ METERS+++K1 =	1.034= RAT	FICIENCY(X)	
	VS(N/S) VS(KTS)	B(TESLA) L(METERS)	CUR(KAMP) VOLTS	PRESS(PSI) THICKNIS)	.008	5.468	
	1.028 2.000 2.056 3.5988 4.000 3.5988 4.000 3.5988 4.000 4.112 8.000 5.456 10.000 5.456 11.000 6.4682 13.000 5.456 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.450 12.000 5.0000 5.00000 5.00000 5.00000 5.00000 5.00000 5.00000 5.00000 5.00000 5.00000 5.00000 5.00000 5.00000 5.00000 5.000000 5.000000 5.0000000 5.0000000000		• 1020 • 1020	001429000 001429000 001429000 001429000 00142900 0014290 00048 0014290 00048 0014290 00048 0014290 00048 0014290 00048 0014290 00048 0014290 00048 0014290 00048 0014290 00048 0014290 00048 0014290 00048 0014290 00048 0014290 00048 0014290 00048 0014290 00048 0014290 00048 0014290 00048 00000000	•003524 •003524 •1002 •11676 •22507 •	5.714 7.5027 7.5027 7.5027 7.5027 7.5027 7.5027 7.5027 7.502 7.7128 7.7128 7.7128 7.7128 7.7128 7.7128 7.7128 7.5026 7.50	ucTs
κ.	-500+02 NT/(8/5)2	= .297+01 LB/(KT)	2 ***AREA = 1.0	00 SG HETERS+++K1 =	1.048= RA	IO VIN/VS	
	VS(m/S) VS(KTS) 1.028 2.000 1.028 3.000 2.550 5.000 2.5570 5.000 3.568 7.0000 4.028 7.0000 4.028 9.0000 5.654 11.0000 5.654 11.0000 6.168 13.0000 7.7106 15.0000 8.728 17.0000 7.7106 19.0000 7.7280 20.000	B (TESLA) L (METERS) -500 2.000 -500 2.000	CUR(KAMP) VOLTS 103 13.447 275 29.573 6459 15.7766 1.2057 7766 1.2057 7766 1.2057 7766 1.2057 200 407 2.0082 4150 1.00.019 1.2057 200 407 2.0082 4150 3.7718 546 904 4.588 904 4.568 904	PRESS(PSI) TH(KNTS) -01 -053 -05 -211 -05 -211 -07 -476 -07 -476 -12 -484 -12 -484 -12 -484 -12 -484 -12 -484 -12 -484 -12 -484 -12 -484 -13 -14 -13 -14 -14 -	TH(KLBS) E -012 -048 -074 -107 -146 -190 -241	11 CIENCY (2) 3.911 2.643 1.905 1.340 TENTH 1.008 5.725 6.735 1.044 5.735 1.044 5.755 5.755 5	1- cT
Ks .	.125+02 NT/(H/S)2	2 = .743+00 LB/(KT)	12 +++AREA = 1.0	00 SO METERS***K1 *	TH(KIRS) E	FFICIENCY(X)	
	VS(#/S) VS(KTS) 1.028 2.000 2.5542 5.000 2.5570 5.000 3.5586 7.000 3.5586 7.000 4.112 8.000 4.626 9.000	B(TESLA) L(METERS) -500 2.000 -500 2.000 -500 2.000 -500 2.000 -500 2.000 -500 2.000 -500 2.000 -500 2.000	OUR(KAMP) VOLTS 076 3.803 059 8.1660 105 14.175 105 21.105 14.175 14.175 14.175 14.175 14.175 15.1058	00 013 001 0053 001 0053 002 110 005 1055 002 110 005 1055 005 005 005	.003 .007 .012 .019 .027 .036 .048 .060	13-600 7-209 5-027 4-988 4-307 3-789 3-382 4 Dec	Ts.

. . . .

73

										DATE 072779	PAGE
	ELE 10 10 10 10 10 10 10 10 10 10	10					05 06 06 09 11 12 14 15 17 19 00 \$9 METERS	-330 -476 -476 -657 -657 -657 -6577 -6557	074 -090 -126 -146 -146 -147 -147 -246 -267 -267 -267	3.054 2.588 5.666 7.001 7.007 1.007	
Ks =	-556+01 + VS(H/S) 	T/ (N/S) 2 VS (KTS) VS (KTS) V		L(METERS) C - 0000 -			PRESS(PSI) .07 .01 .01 .01 .02 .02 .05 .05 .05 .05 .05 .05 .05 .05	TH (KNTS) - CO5 - C	TH(KL85) .001 .005	EFFICIENCY() 76.024 14.024 12.0362 12.0362 12.0362 12.0362 12.0362 12.0362 12.0362 12.0362 12.0362 12.0362 13.0462	e) 9 Ducts 2)
	VS (#/1) Broconstruction of the state	VI (175) VI		L (#ETERS)	**************************************	VOL 75 40000100000000000000000000000000000000	PRESS (PS1) .00 .00 .00 .00 .00 .00 .00 .0	TH (K N 1 3) 0007510005673000567300056730005673000567300056730005673000567300056730005673077500567307567500056750000000000	-0001 -0002 -0005 -0005 -0005 -0005 -0012 -0012 -0012 -0012 -0012 -0012 -0012 -0012 -0012 -0012 -0012 -0012 -0012 -0005 -005	2022 2022 2022 2022 2022 2022 2022 202	16 Ducts
Ks	500+04 VS (#/5) 1++0500+88260 +++0500+1200+	NT/(R/S)2 VS(KTS) ************************************	= .297+ B(TESLA) -500 -500 -500 -500 -500 -500 -500 -50	03 L8/(KT); L(METERS) 10.000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000	CUR (KAMP 12-6533 74-6533 77-655 1155-67-755 1155-67-755 383-613	A	250 SG HETER PRESS (PS1) 1.84 4.14 7.36 11.40 16.55 22.53 37.24 45.97 55.62	S *** K1 = TH (KNTS) S * 889 211 * 05588 454 * 5458 864 * 5439 159 * 839 159 * 839	5.000= TH (KLB5) 1.189 2.674 7.428 10.697 14.560 19.017 24.068 29.714 35.953	RATIO VIN/V EFFICIENCY - 135 - 0067 - 0054 - 0055	s (r) (?

DISTRIBUTION LIST

(3 copies)

Office of Naval Research 800 North Quincy St. Arlington, VA 22217 I.CDR H. P. Martin, Code 211

Naval Sea Systems Command (1 copy) Washington, DC 20360 CDR R. K. Watterson, Code 924A3

David W. Tay'or Naval Ship Research (1 copy) and Development Center Bethesda, MD 20084 Dr. Robert Allen, Code 012

Nival Ship Engineering Center (1 copy) Washington, DC 20360 Mr. D. Toffolo, Code 6157C

Naval Material Command (1 copy) Washington, DC 20360 Mr. O. J. Remson, MAT 08T23

David W. Taylor Naval Ship Research (1 copy) and Development Center Bethesda, MD 20084 Mr. R. M. Stevens, Code 117

Yaval Sea Systems Command (1 copy)
Washington, DC 20360
Mr. C. L. Miller, Code 0331

David W. Taylor Naval Ship Research (1 copy) and Development Center Annapolis, MD 21402 Dr. Earl Quandt, Code 272

Strategic Project Office (1 copy) NSP-200 Washington, DC 20360 CAPT J. P. Williamson, Jr. Office of Naval Research (1 copy) 800 North Quincy St. Arlington, VA 22217 Mr. John Satkowski, Code 473

(6 copies)

(6 copies)

Director Naval Research Laboratory Washington, DC 20375, Code 2627

Office of Naval Research 800 North Quincy St. Arlington, VA 22217, Code 1021P

Defense Documentation Center (12 copies) Bldg. 5 Cameron Station Alexandria, VA 22314

Office of Naval Research Branch (1 copy) Boston Branch 495 Summer Street Boston, MA 02210